Fiber MOPA for Ascends, Phase I

Project Introduction

CO2 sensing using absorption bands near 1570nm is very attractive by taking advantage of the mature fiber-amplifier technology derived from fiber-optic telecom heritage. This necessitates sufficient power scaling in 1.5 micrometer fiber-amplifiers, either in the pulsed-mode, or in the cw-mode for modulation spectroscopy. In this SBIR program we propose the design, optimization, experimental evaluation and prototype development of a high-power, high wall-plug efficiency, 1571.1 nm fiber-amplifier laser transmitter, compatible with multi-line cw intensity-modulated integrated-path differential absorption spectroscopy, with the size, weight and power (SWaP) optimized for airborne and eventual space-qualifiable roadmap for ASCENDS mission. We leverage innovations in high-power 1.5 micrometer fiber-optic technology and fiber-amplifier architecture, while using high-reliability 1.5 micrometer silica-fiber based passive/active components. Our expectation is that at the end of Phase 2, a TRL-6 level hardware can be developed and delivered for an airborne mission, and which is also compatible with a space-flight maturation roadmap.

Primary U.S. Work Locations and Key Partners

Fiber MOPA for Ascends

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Images	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)		
Technology Areas	3	
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

Fiber MOPA for Ascends, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Fibertek, Inc.	Lead Organization	Industry	Herndon, Virginia
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Primary U.S. Work Locations

Virginia

Project Transitions

0

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140430)

Images

Project Image

Fiber MOPA for Ascends (https://techport.nasa.gov/imag e/126274)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Fibertek, Inc.

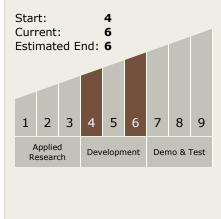
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Wei Lu

Technology Maturity (TRL)

Fiber MOPA for Ascends, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 TX08.1 Remote Sensing Instruments/Sensors
 - └ TX08.1.5 Lasers

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

